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Summary

� Understanding how plant communities respond to temporal patterns of precipitation in

water-limited ecosystems is necessary to predict interannual variation and trends in ecosystem

properties, including forage production, biogeochemical cycling, and biodiversity.
� In North American shortgrass prairie, we measured plant abundance, functional traits

related to growth rate and drought tolerance, and aboveground net primary productivity to

identify: species-level responsiveness to precipitation (precipitation sensitivity Sspp) across

functional groups; Sspp relationships to continuous plant traits; and whether continuous trait–-
Sspp relationships scaled to the community level.
� Across 32 plant species, we found strong bivariate relationships of both leaf dry matter con-

tent (LDMC) and leaf osmotic potential Ψosm with Sspp. Yet, LDMC and specific leaf area were

retained in the lowest Akaike information criterion multiple regression model, explaining 59%

of Sspp. Most relationships between continuous traits and Sspp scaled to the community level

but were often contingent on the presence/absence of particular species and/or land manage-

ment at a site.
� Thus, plant communities in shortgrass prairie may shift towards slower growing, more

stress-resistant species in drought years and/or chronically drier climate. These findings high-

light the importance of both leaf economic and drought tolerance traits in determining species

and community responses to altered precipitation.

Introduction

Water is a vital resource for terrestrial ecosystem processes, such
as photosynthesis and net primary productivity (Del Grosso
et al., 2008). Changes in water availability due to interannual
variation and directional shifts in precipitation can cause fluctua-
tions in the abundance of different plant species within commu-
nities (Carson & Pickett, 1990; Collins et al., 2012). The
response of each species within a community to wet or dry years
is driven by physiological and competitive constraints on its sen-
sitivity to soil moisture fluctuations. Species’ responses within a
community combine to yield variation in ecosystem services,
such as forage quantity (French, 2017), livestock production
(Bailey, 2005), habitat for wildlife (Ceradini & Chalfoun, 2017),
biogeochemical cycling (Xu et al., 2013; Du et al., 2018), and
invasion resistance (Byers, 2002).

Many terrestrial ecosystems are likely to experience chronically
altered amounts of precipitation in the future, with some systems
becoming wetter and others drier depending on geographic

location (IPCC, 2013; Greene & Seager, 2016). Through
impacts on individual species, these changes in precipitation
regimes can shift plant community structure (Wilcox et al.,
2016), which can feed back to impact how ecosystems respond to
global change drivers (Smith et al., 2009). The challenge becomes
predicting which species will perform well and which poorly as
precipitation varies and climates change. Although much work
has focused on characteristics that control plant abundance and
affinities across spatial gradients of resource availability (Bartlett
et al., 2012; Belluau & Shipley, 2017, 2018; Shipley et al., 2017;
Wright et al., 2017), our understanding of the characteristics that
regulate plants’ temporal responses to precipitation remains sur-
prisingly limited.

Researchers and naturalists have long focused on categorical
traits that describe an organism’s functional group determined by
a species’ growth habit (e.g. graminoids, forbs, shrubs) and/or life
span (e.g. annuals versus perennials) to gain insight into different
plant strategies for resource capture, growth, and reproduction
(Clements, 1916; Simberloff & Dayan, 1991). More recently,
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considerable attention has been paid to morphological and physi-
ological plant traits (e.g. specific leaf area (SLA), leaf osmotic
potential), allowing for examination of differences in plant char-
acteristics within as well as across functional groups (Reich et al.,
2007; Violle et al., 2007; Verheijen et al., 2016). Global patterns
show consistent tradeoffs between traits that allow rapid resource
acquisition (e.g. large thin leaves, high leaf nitrogen (N)) and
those that increase leaf longevity or hydraulic safety (e.g. leaf den-
sity, osmotic potential) (Bartlett et al., 2012; Moles et al., 2014;
Dı́az et al., 2016; Ocheltree et al., 2016; Wright et al., 2017).
Relationships between these traits and precipitation or water
availability across locations, however, are less robust (Wright
et al., 2004; Ordoñez et al., 2009; Kattge et al., 2011). For exam-
ple, traits associated with the leaf economic spectrum, such as
SLA and leaf N concentrations, have weak positive relationships
with precipitation and water availability at regional and global
scales (Wright et al., 2005; Moles, 2018), and leaf-level traits
related to drought tolerance (e.g. osmotic potential at full turgor)
and water use efficiency (e.g. carbon (C) isotope discrimination)
are more strongly correlated with measures of aridity (Diefendorf
et al., 2010; Bartlett et al., 2012; Blackman et al., 2014).

Traits that explain species’ existence across climatic gradients
likely have evolutionary significance (Ehleringer & Monson,
1993; Ma et al., 2018) and could be useful for predicting how
species may respond to precipitation variability or change over
time. Thus, a logical application of spatial trait–climate relation-
ships is to use them to predict how temporal variation in precipi-
tation will influence plant species’ abundances and community
composition. Yet, observations suggest ecosystem processes may
not change through time as they do across spatial gradients of
precipitation (Lauenroth & Sala, 1992; Huxman et al., 2004).
Spatial relationships may not reflect how species and communi-
ties will change due to interannual fluctuations in rainfall because
legacy effects of the previous year’s precipitation can create water
availability scenarios mismatched with the current year’s precipi-
tation (Sala et al., 2012). Additionally, species abundance shifts
with chronic changes in water availability may not be in accor-
dance with spatial patterns because many ecosystem attributes
(e.g. soil and biogeochemical properties) can take decades or cen-
turies to change in a manner that would reflect spatial patterns
(Burke et al., 1997). These limitations are borne out by recent
evidence showing that trait variation over environmental gradi-
ents is often not predictive of temporal relationships between
species’ function/survival and environmental conditions (Sandel
et al., 2010; Laughlin et al., 2018).

An exciting way forward is to focus within communities and
ecosystems and link plant traits with species’ performance under
varying weather conditions (Garnier et al., 2007; Jung et al.,
2014; Májeková et al., 2014). Previous research has established a
set of traits related to drought tolerance and, conversely, rapid
growth under high resource conditions (Craine et al., 2001;
Wright et al., 2002; Bartlett et al., 2012; Frenette-Dussault et al.,
2013). Yet, we lack direct tests of how this set of traits influences
species’ capacities to persist and grow across years with widely
varying precipitation. By focusing on long records of temporal
variation in precipitation responses within a group of co-

occurring and competing species, we aim to improve understand-
ing of which traits regulate plant responses to precipitation and
which species are likely to succeed under different precipitation
regimes (Shipley et al., 2016).

Precipitation sensitivity, often represented as the relationship
of abundance or biomass with annual precipitation (Smith et al.,
2017), is an important attribute that describes how plant popula-
tions and communities may fluctuate through time. Additionally,
knowledge of how traits influence precipitation sensitivity should
facilitate prediction of plant community shifts as ecosystems
become wetter or drier (Lavorel & Garnier, 2002; Suding et al.,
2008; Tatarko & Knops, 2018). If species’ responses to precipita-
tion can be predicted from traits, chronic changes to precipitation
may also lead to predictable changes in traits of the entire com-
munity (i.e. average species-level traits weighted by species abun-
dance). For example, if species with greater SLA are linked with
greater precipitation sensitivity, we might predict that species
with greater SLA would become more abundant under chroni-
cally wetter conditions, leading to a community with greater
SLA. Yet, there are many reasons that scaling from the species to
community level may not be so straightforward. Shifts in com-
munity traits may be dependent on the assemblage or relative
abundance of species within the starting community (Fukami
et al., 2005). Also, compensation or asynchrony among species
(Isbell et al., 2009) complicates simple species-to-community
scaling of traits. Therefore, it will be important to test whether
community-level traits shift with precipitation in the same way
that species-level sensitivity varies across traits.

Here, we combine long-term data describing community and
species performance (aboveground net primary productivity
(ANPP), species’ abundance) and species’ traits for 32 species in
a North American shortgrass prairie to address the following
questions: (1) How does precipitation sensitivity vary across
species, growth habit (e.g. forbs, graminoids, shrubs/subshrubs),
and life span (e.g. annuals, perennials)? (2) Which leaf economic
and drought tolerance traits are correlated with a species’ precipi-
tation sensitivity? (3) Do functional groups differ in which traits
explain sensitivity? (4) Do traits that predict species-level varia-
tion in precipitation sensitivity also vary with precipitation at the
community level? Associated with these questions, we tested the
overarching prediction that species and communities with ‘fast’,
resource-acquisitive traits (e.g. annuals) are more sensitive to fluc-
tuating precipitation over time than species and communities
with ‘slow’, resource-conservative traits (e.g. perennials, and
species with greater drought tolerance and water use efficiency;
following Reich (2014)). Addressing these questions will provide
insight into how altered precipitation regimes may impact grass-
land plant communities, and how various plant species/groups
cope with altered precipitation.

Materials and Methods

Site description

Data were collected at the USDA-ARS Central Plains Experi-
mental Range (CPER) site near Nunn, CO, USA (40°490N,
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107°460W), part of the Long-Term Agroecosystem Research
(LTAR) Network. The 6270 ha research site is divided into 45
different pastures that vary in the duration, timing, and/or inten-
sity of grazing. Mean annual temperature is 8.4°C, with maxi-
mum temperatures in July averaging 30.6°C and minimum
average temperatures in January of −11.0°C (Milchunas et al.,
1994). Mean annual precipitation at the site is 343.7 mm, yet
interannual variation is high (SD = 92.5 mm, 1939–2017;
Lauenroth & Bradford, 2006). The majority of precipitation
occurs from late spring through early fall, when temperatures are
warm enough to facilitate plant growth (Lauenroth & Bradford,
2006; Irisarri et al., 2016). Soils at the site are primarily fine-
sandy loams. Vegetation is dominated by the warm-season (C4)
perennial grass species, Bouteloua gracilis [Willd. Ex Kunth]; in
grazed pastures, B. gracilis has a mean relative canopy cover of
60% (SD = 14%) and in ungrazed areas it has a mean relative
canopy cover of 29% (SD = 18%; Augustine et al., 2017). Sub-
dominant species are Carex duriuscula C.A. Mey (C3 sedge),
Bouteloua dactyloides [Nutt.] J.T. Columbus (C4 perennial grass),
Pascopyrum smithii [Rydb.] Á. Löve (C3 perennial grass),
Sphaeralcea coccinea [Nutt.] Rydb. (perennial forb), Artemisia
fridgida Willd. (subshrub), and Opuntia polycantha Haw. (cac-
tus). Annual species, such as Vulpia octoflora [Walter] Rydb., can
make up more than 50% of herbaceous plant production during
certain years but are typically less abundant (Dufek et al., 2018).

Quantifying plant traits

From 2014 to 2017, we collected plant trait information for 32
common species (Table 1), chosen based on their rankings from
mean long-term abundance in both grazed and ungrazed locations
across the CPER. The only common species omitted was Opuntia
polyacantha, a cactus for which measurement of many leaf traits
was not feasible nor comparable. Species were characterized as
graminoids, forbs, and shrub/subshrubs and as annuals and peren-
nials based on the USDA PLANTS Database (USDA, 2015).
Here, we focus on 11 plant traits that we identified a priori as
likely to influence precipitation sensitivity by either mediating a
plant’s ability to withstand water stress or to grow rapidly. Focal
traits included: SLA, leaf nitrogen (N, %), leaf phosphorus (P, %),
stem specific density, leaf osmotic potential Ψosm, leaf thickness,
leaf pubescence, leaf dry matter content (LDMC), leaf area, plant
height, and Δ13C (the δ13C ratio of leaves expressed relative to the
δ13C ratio of the atmosphere, a proxy for C-isotope discrimination
and water use efficiency during photosynthesis). Leaf Δ13C was
calculated following (Farquhar et al., 1989):

Δ13C¼
δ13Cair�δ13Cleaf

1þδ13Cleaf

1000
Eqn 1

where δ13Cair = −9.19‰ was measured on site. Note that
several of these traits have been related to the ability of species to
grow rapidly and their ability to withstand environmental stres-
sors (e.g. LDMC; Wilson et al., 1999; Saura-Mas & Lloret,
2007). Measurement of plant traits followed methods outlined
by Pérez-Harguindeguy et al. (2013, 2016); see Supporting

Information Table S1 for additional information about these
traits and how they were measured. Traits were log10 or square-
root transformed to maximize normality (Table S1). Since Ψosm

is inherently negative, the absolute value was taken before trans-
formation. As such, the directionality of these values is the oppo-
site of raw values (i.e. larger values indicate greater drought
tolerance). Mean trait values for each species are publicly avail-
able on Dryad (https://doi.org/10.5061/dryad.8sf7m0cjr).

Estimating species’ sensitivity to interannual variation in
precipitation

To address questions 1–3, we assessed sensitivity to interannual
variation in precipitation for all 32 species for which trait

Table 1 Metrics describing sensitivity to interannual variation in
precipitation Sspp of 32 species at the Central Plains Experimental Range in
northern Colorado, USA.

Species Growth habit Life span Sspp

SE of
Sspp

Tragopogon dubius Forb Perennial 2.2 1.1
Oenothera albicaulis Forb Annual 2.0 0.78
Lappula occidentalis Forb Annual 1.7 0.59
Cryptantha minima Forb Annual 1.3 0.69
Plantago patagonica Forb Annual 1.2 0.38
Vulpia octoflora Graminoid Annual 1.2 0.40
Lepidium densiflorum Forb Annual 1.1 0.50
Chamaesyce
glyptosperma

Forb Annual 0.90 0.59

Bromus tectorum Graminoid Annual 0.69 0.94
Astragalus gracilis Forb Perennial 0.69 1.0
Artemisia frigida Shrub/

subshrub
Perennial 0.64 0.35

Thelesperma filifolium Forb Perennial 0.63 0.50
Oenothera suffrutescens Forb Perennial 0.61 0.54
Chenopodium

leptophyllum

Forb Annual 0.39 0.51

Salsola tragus Forb Annual 0.38 0.50
Psoralidium tenuiflorum Forb Perennial 0.30 0.40
Pascopyrum smithii Graminoid Perennial 0.22 0.26
Cirsium undulatum Forb Perennial 0.21 0.81
Elymus elymoides Graminoid Perennial 0.17 0.38
Sporobolus cryptandrus Graminoid Perennial 0.17 0.25
Sphaeralcea coccinea Forb Perennial 0.14 0.14
Eriogonum effusum Shrub/

subshrub
Perennial 0.072 0.23

Bouteloua gracilis Graminoid Perennial −0.0017 0.070
Bouteloua dactyloides Graminoid Perennial −0.013 0.22
Carex duriuscula Graminoid Perennial −0.065 0.13
Aristida purpurea Graminoid Perennial −0.069 0.23
Picradeniopsis

oppositifolia

Forb Perennial −0.12 0.41

Liatris punctata Forb Perennial −0.15 0.53
Ericameria nauseosa Shrub/

subshrub
Perennial −0.30 0.90

Gutierrezia sarothrae Shrub/
subshrub

Perennial −0.44 0.45

Hesperostipa comata Graminoid Perennial −0.48 0.26
Lithospermum incisum Forb Perennial −1.2 1.3

Nomenclature from USDA PLANTS as of 1 February 2020.
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information was collected. Calculating sensitivity from intact
local communities provides the advantage of incorporating com-
petition effects into the measure. Using species-level absolute
foliar cover data from a long-term grazing study (see following
section), species’ sensitivities were estimated as the within-species
proportional change in cover per millimeter of interannual varia-
tion of rainfall. The proportional change was assessed instead of
the absolute change in order to minimize the potential for a
strong bias of the metric towards dominant species. To this end,
species absolute cover values were standardized as
Coverstd ¼ðx� xÞ=x , where x is the absolute cover value of a
species in a particular year, and x is the average absolute cover of
a species across all years. Then, the slope between standardized
cover values and water-year precipitation (1 September–
31 August) was used as the sensitivity of that species to precipita-
tion Sspp. We used the inverse of the SE around this slope to
weight trait–sensitivity regressions to minimize the impact of less
robust sensitivity estimates. Because species are not uniformly
abundant across grazing regimes (Porensky et al., 2017), we cal-
culated sensitivity separately using data from two pastures having
light or no grazing and from two pastures having moderate to
heavy grazing. When species were present in both sets of pastures,
sensitivity and the SE of sensitivity were averaged across the sets.

We assessed the performance of species sensitivity estimates
by scaling them up to the community level and comparing
with a commonly used sensitivity metric – see review by Smith
et al. (2017). To this end, we used species abundance data in
15 separate plots across CPER that were independent from the
plots used to calculate sensitivity (see following section). We
did this by calculating the community-weighted sensitivity for
each plot: S comm ¼∑n

i¼1S sppi � pi , where Ssppi is the sensitivity
value for species i, and pi is the relative abundance of species i
in a plot. Next, we regressed Scomm with the sensitivity of
ANPP data (slope between ANPP and water-year precipitation)
for the same 15 additional plots. ANPP measurements from
the shrub species Artemisia frigida were excluded from this
analysis because of difficulties obtaining precise measurements
of ANPP for this species. Overall, this exercise produced
robust support for Sspp as a useful metric to estimate precipita-
tion sensitivity at the species level (see Fig. S1 and caption for
further details).

Plant species abundance and primary productivity
measurements

Species abundance measurements from the long-term grazing
intensity (LTGI) study were used to estimate species-level precip-
itation sensitivity values and to calculate community-weighted
means of functional traits. LTGI is comprised of four pastures
with similar loamy soils that have experienced different levels of
grazing (none, light, moderate, and heavy) during May–October
since 1939 (Klipple & Costello, 1960). From 2003 to 2014,
species-level plant foliar cover (aerial cover of all vegetation) was
measured in each of the four pastures in sixty 0.1 m2 plots using
modified Daubenmire cover classes (Daubenmire, 1959). Plot
locations within a pasture varied slightly from year to year

(5–10 m in random cardinal direction), so we averaged foliar
cover across plots in each year to obtain pasture-level estimates of
species cover. All plots where cover was measured were protected
from grazing throughout the growing season using moveable
exclosures. Exclosures were relocated annually prior to cattle
entering the pasture, so plots were subjected to grazing in all years
except for the year of measurement.

Species abundance and ANPP from three other data sets at
CPER were used to assess the robustness of species-level precipi-
tation sensitivity estimates calculated from the LTGI study (Fig.
S1). The first data set describes species abundance and ANPP in
10 moderately grazed areas initiated in 1939. Within these, basal
coverage measurements (aerial coverage of stems 1 cm from
ground level) were taken from 1992 to 2015. Species abundance
estimates were obtained by averaging across basal cover measure-
ments taken in 20 quadrats (0.1 m2 each) within each exclosure
and paired area. ANPP in this data set was collected annually
from 1992 to 2015 in six 0.25 m2 plots located within small
moveable grazing exclosure cages (as already mentioned for
LTGI). The other two data sets describe species-level ANPP in
five separate areas from 1983 to 2016 (minus 2009–2013 when
data were not collected). Species-level ANPP, averaged across fif-
teen 0.25 m2 quadrats sampled within each study area, were
summed in each plot and averaged across plots to yield ANPP.
Collectively, these additional ANPP estimates, from 15 separate
plots in total, were used to assess the robustness of the relation-
ship between precipitation sensitivity and ANPP at the commu-
nity scale.

Calculating community-weighted traits

To assess how traits are altered by precipitation at the community
level, we calculated community-weighted trait values Tcomm:

T comm ¼ ∑
n

i¼1

T ipi Eqn 2

T, trait value of species i; pi, relative abundance of species i; n,
number of species measured in the pasture. Tcomm for each trait
was calculated annually using pasture-level species foliar cover
from the LTGI data set and regressed with water-year precipita-
tion. Summed relative abundance of the 32 species for which we
had plant trait information was > 90% in all years and all areas
we examined.

Statistical analyses

To assess variability in precipitation sensitivity among functional
groups (question 1), Sspp values were compared among growth
habit (graminoid, forb, shrub/subshrub) and life span (annual,
perennial) via a type III ANOVA. Sspp values were weighted by
the inverse of the standard error of the slope of each species (1/SE
of Sspp); this resulted in a hypothesis test that emphasized species
with more precise estimates of Sspp. We also ran unweighted
models for comparison, and results were qualitatively similar.
Specifically, the same traits were generally retained as predictors
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in ‘best’ models of Sspp (see below), but unweighted models had
less explanatory power.

To assess traits as predictors of Sspp (question 2), bivariate rela-
tionships between trait values and Sspp (weighted by 1/SE of Sspp)
were assessed using regression. Sspp was square-root transformed
(after adding a constant) to improve normality within multiple
regression models. Forward, backward, and bi-directional step-
wise regression using Akaike information criterion (AIC) was
used to identify key plant traits for predicting Sspp across species.
All three methods of model selection yielded identical final mod-
els, so we report output from the bi-directional selection process
only. Leaf Δ13C was not included in the stepwise regression
because leaf Δ13C is not comparable across C3 and C4 species.

To augment findings from stepwise selection, we also con-
ducted path analysis to simultaneously assess direct and indirect
relationships of traits with Sspp. Path analysis was selected instead
of structural equation modeling because we desired to examine
linkages among trait measurement variables and between trait
measurements and Sspp. To this end, we selected the following
a priori model based on the following rationale: (1) we wished to
test the direct influence of the strongest bivariate trait Sspp rela-
tionships – LDMC, Ψosm, and SLA; (2) we wished to examine
whether the importance of LDMC was mediated through SLA or
Ψosm, or if its effect was independent of these other traits; (3) leaf
thickness was included because it, along with leaf density, is an
important component of both SLA and LDMC. This rationale
resulted in the following model: Sspp ~ Ψosm + SLA +
LDMC + Leaf Thickness; SLA ~ LDMC + Leaf Thickness;
Ψosm ~ LDMC; Leaf Thickness ~~ LDMC. In this set of for-
mulas, ‘~’ represents regressed on and ‘~~’ represents covariance.
Because of collinearity concerns (Petraitis et al., 1996), we
checked correlations for the two potential relationships not repre-
sented in our a priori model. Neither SLA ↔ Ψosm nor
Leaf Thickness ↔ Ψosm showed particularly strong correlations
(Fig. S2).

To assess variability in trait–Sspp relationships among func-
tional groups (question 3), we conducted bidirectional stepwise
AIC model selection for each trait–sensitivity combination with
life span-by-trait (Trait × Life) and growth habit-by-trait (Trait
× Habit) interaction terms in the model. Significant life span
and growth habit terms in the resulting ‘best’ models (models
with lowest AIC during bidirectional selection process) were used
as indicators of whether trait–sensitivity relationships differed
across growth habit and life span. Additionally, we examined
model terms retained in any model within two AICs of ‘best’
models.

We used linear regression to assess linkages between commu-
nity-weighted means of functional traits Tcomm and water-year
precipitation (question 4). As was the case for species-level sensi-
tivity calculations, this was done separately for pastures receiving
no or light grazing, and those receiving moderate to heavy graz-
ing.

All analyses were done in R (R Core Team, 2020), and
scripts are publicly available on GitHub (https://github.com/
wilcoxkr/Precip_sensitivity_traits_2020). Data used to calculate
sensitivity metrics and mean trait values for each species are

publicly available (see data availability statement associated
with this article).

Results

Sensitivity of plant growth to annual precipitation (September–-
August; Sspp) was calculated for 32 species: 10 graminoids, 18
herbaceous forbs, and 4 shrubs or subshrubs; 10 were annual
species and 22 were perennials. Sspp represents the proportional
change in species abundance (relative to its average absolute
abundance) for every 1 mm change in water-year precipitation.
For example, a species with an Sspp value of 1.0 would increase by
10% with an increase of 10 mm water-year precipitation, or dou-
ble with an increase of 100 mm. Sspp ranged from +2.2 to
−1.2% mm−1. For most species Sspp was positive (Table 1),
reflecting greater abundance in high-rainfall years and lower
abundance in low-rainfall years. We found strong differences in
Sspp between annual and perennials, with perennial species hav-
ing, on average, 86% lower sensitivity than annual species
(F1,28 = 19.0, P < 0.01, Fig. 1). We found no significant differ-
ences in Sspp among growth habit (F2,28 = 0.99, P = 0.38, Fig.
1).

Trait–Sspp relationships

Of the 11 traits we examined, we identified six statistically signifi-
cant (P < 0.05) cross-species correlations between plant traits
and Sspp (Fig. 2). Species having greater SLA, leaf N, and leaf P
generally had higher Sspp (Fig. 3a–c). Alternately, species having
greater stem specific density, more negative leaf osmotic potential
(Ψosm – note that the values in Fig. 2 are opposite in sign to raw
Ψosm values), and greater LDMC generally had lower Sspp (Fig.

Fig. 1 Least-squared means from the model comparing precipitation
sensitivity Sspp across growth habit and life span, which was weighted by
the inverse of the standard error of a species’ Sspp. Letters within panels
indicate significant differences among growth habit or life spans. Asterisks
indicate that Sspp is significantly different than zero. Bars represent� 1 SE
from the mean. The threshold for statistical significance was set at
α = 0.05.
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3d,e,h). LDMC was the trait most strongly correlated with Sspp
(r = −0.67). We did not find significant correlations between
Sspp and leaf thickness, pubescence, leaf area, plant height, or leaf
carbon-isotope discrimination (Δ13C; Fig. 3f,g,i–k).

Owing to covariance among leaf traits (Fig. S2), the pairwise
correlations between leaf traits and Sspp are not necessarily inde-
pendent of one another. Bidirectional stepwise model selection
based on AIC was used to determine the set of traits that best pre-
dicted Sspp. We found that LDMC and SLA together represented
the model with the lowest AIC, explaining 59% of the variation
in Sspp. Within this model, both LDMC and SLA were signifi-
cant predictors (P < 0.01) whose modeled effects were largely
independent (variance inflation factor VIF = 1.02 for LDMC
and SLA). Leaf N and leaf P were included in preceding models
during selection that had AIC values within 2 of the final model
(Table S2), so these were similarly useful predictors of Sspp. Leaf
N and leaf P were not highly collinear (VIF < 2.5 for leaf P and
leaf N).

Path analysis was used to detect direct and indirect effects of
multiple key drought tolerance and economic traits (Fig. 3). The
a priori model we selected was not a significantly poor fit to the
data (χ2 = 0.10, df = 2, P = 0.95). This analysis showed strong
independent regressions of SLA (z = 2.3, P = 0.02) and LDMC
(z = −2.1, P = 0.04) with Sspp, whereas Ψosm and leaf thickness
direct regressions with Sspp were not significant (z = 0.87,
P = 0.39 and z = 0.01, P = 1.0, respectively). Leaf thickness
and LDMC were both strongly negatively related with SLA
(thickness: z = −6.4, P < 0.01; LDMC: z = −5.6, P < 0.01).
LDMC was also positively related to Ψosm (z = 5.2, P < 0.01).

Effects of traits, growth habit, and life span on precipitation
sensitivity Sspp

We examined whether trait values were a significant predictor in
trait–Sspp models that also included growth habit and life span.
We found that life span was important in most of the trait–Sspp

(a) (b) (c) (d)

(e) (f)

(i) (j) (k)

(g) (h)

Fig. 2 Interspecific bivariate relationships between precipitation sensitivity Sspp and plant trait values. Regressions are weighted by the inverse of the SE of a
species’ sensitivity value. Colors represent different life spans. Different panels show different plant traits: (a) specific leaf area (SLA); (b) leaf nitrogen (leaf
N); (c) leaf phosphorus (leaf P); (d) stem specific density; (e) leaf osmotic potential (Ψosm); (f) leaf thickness; (g) pubescence; (h) leaf dry matter content
(LDMC); (i) individual leaf area; (j) plant height; (k) leaf Δ13C. Nonsignificant regression lines (α = 0.05) are not shown. The regression for leaf Δ13C was
performed separately for species with C3 and C4 photosynthetic pathways.
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models but that traits had additional predictive value. For most
of the traits that were robust predictors of Sspp by themselves,
trait variation within growth habit and/or within life span was a
useful predictor of Sspp (statistically significant for SLA and
LDMC; marginally significant for leaf N, Ψosm, and stem specific
density; Table 2). By contrast, the relationship between leaf P
and Sspp was driven primarily by differences between annuals and
perennials. Notably, when accounting for differences between life
span and/or growth habit, we found some evidence that the five
traits that did not show a significant univariate relationship with
Sspp all explained additional variance in Sspp. For example, the
size of individual leaves (leaf area) was positively correlated with
Sspp within both annuals and perennials, but leaf area was not a
significant predictor across all species (Fig. 2i). Significant Trait
× Life terms for pubescence and plant height (P = 0.02 and
P = 0.05, respectively) indicate that the effects of these traits on
Sspp differed for annual versus perennial species (Fig. 2g,j).
Pubescence had a more positive slope with Sspp for annual (0.11
� 0.16; slope � 95% confidence interval) versus perennial
species (7.0 × 10−4 �6.0 × 10−2). Plant height had a more neg-
ative slope with Sspp for annual species (−0.066 � 0.067) than
for perennial species (0.019 � 0.049).

Community-weighted traits

Finally, we aimed to assess how community-weighted traits
might respond to temporal variation in precipitation (response
traits sensu Lavorel & Garnier, 2002). To gauge the strength of
each trait as a community response trait, we calculated standard-
ized slopes between Tcomm and water-year precipitation in four

adjacent pastures with similar soils. We found that all traits
except stem specific density and plant height had significant
Tcomm–precipitation slopes in either light-to-no grazing or mod-
erate-to-heavy grazed communities. Interestingly, the magnitude
of the slope varied with grazing for leaf N, leaf thickness, and leaf
pubescence (Fig. 4), likely reflecting the low occurrence of species
with high N, thick leaves in moderate to heavily grazed areas, and
low occurrence of species with pubescent leaves in areas with no
or light grazing.

Discussion

In this study, we examined how temporal sensitivity to pre-
cipitation varied among species, growth habit, and life span,
which traits were robust predictors of that sensitivity, and
whether these traits were also predictors of community-level
responses. Our major findings were: (1) annual species were,
on average, almost an order of magnitude more sensitive to
interannual variation in precipitation than perennial species
were (Fig. 1); (2) SLA and LDMC together explained 59%
of the variation in sensitivity across 32 species, yet these two
trait–sensitivity relationships were largely orthogonal to each
other; (3) at the community level, leaf economic traits, stem
traits, and traits related to drought tolerance (e.g. leaf Ψosm)
were related to interannual variation of precipitation, but
responses depended on grazing regime and abundance of par-
ticular species. Together, these results highlight the impor-
tance of both economic and drought-tolerance traits, and the
potential ability of trait-based approaches to help scientists
and managers predict species and community-level responses
to weather variability and climate change.

Precipitation sensitivity Sspp among functional groups

Regional and global assessments suggest that, across ecosystems,
the sensitivity of net primary productivity to interannual variabil-
ity in precipitation is dependent on climate, with more mesic
ecosystems being less sensitive to fluctuations of precipitation
across years (Huxman et al., 2004; Sala et al., 2012; Biederman
et al., 2016). However, case studies have provided evidence that
the type of vegetation present within an ecosystem can also have
strong impacts on the sensitivity of an ecosystem to precipitation
fluctuations (Xu et al., 2013; Scott et al., 2014; Wilcox et al.,
2015). We predicted that such variability in the precipitation sen-
sitivity of plant communities should be a function of both cate-
gorical plant traits (e.g. growth habit and life span) and
continuous plant traits (e.g. leaf economic traits). Our results
support this prediction. For example, the lower sensitivity of
perennial species to year-to-year variation in precipitation in the
shortgrass steppe is likely a function of the fact that the leaves,
stems, and roots of perennials tend to have traits associated with
a ‘slower’ strategy for growth and resource acquisition (relative to
annuals). Additionally, species mortality and limited germination
cues due to water stress likely limit abundance of annual species
in dry years. Consistent with this interpretation, we observed
that, both within and across plant functional groups, species with

Fig. 3 Path analysis assessing direct and indirect relationships between key
economic and drought-tolerance traits and species sensitivity to
interannual variation in precipitation Sspp. Traits assessed were leaf dry
matter content (LDMC), leaf thickness, leaf osmotic potential (Ψosm), and
specific leaf area (SLA). Black and red solid arrows represent positive and
negative effects, respectively. Gray dashed lines represent nonsignificant
effects at α = 0.05. Numbers within lines and line thickness represent
magnitude of standardized effect sizes. Directional arrows travel from
predictor variables to dependent variables, whereas double-ended arrows
represent covariance accounted for within the model. Note that the
absolute value of leaf osmotic potential was used in this analysis (i.e.
greater values indicate greater drought tolerance).
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low SLA, high LDMC, and/or more negative leaf Ψosm were less
sensitive to interannual variability in precipitation.

Other unmeasured traits likely also contributed to the patterns
we observed. For example, the lower sensitivity of perennial
species may be a function of their ability to utilize carbohydrates
stored from previous years’ growth, which can buffer individuals
in years when soil moisture levels are suboptimal (White, 1973).
Additionally, perennial species are often more deeply rooted than
annual species, which can allow organisms to avoid drought
(Nippert & Knapp, 2007). By contrast, annual species have
greater aboveground growth rates when environments are favor-
able (Hsiao & Acevedo, 1974), as reflected here in high values

for SLA and leaf nutrient concentrations. This is likely also due
to low root:shoot ratios and the lack of belowground carbohy-
drate storage for future growing seasons (De Souza & Da Silv,
1987). In addition to differences among functional groups, the
resolution of these data allowed us to assess species-level relation-
ships between continuous traits and Sspp.

Interspecific patterns of precipitation sensitivity Sspp and
continuous traits

We found that Sspp was best predicted by both leaf economic and
drought-tolerance traits. The strongest bivariate relationship

Table 2 P values of terms included in the lowest Akaike information criterion (AIC) models (‘best’ models) of sensitivity to interannual variation in precipita-
tion Sspp from bidirectional stepwise model selection for each trait.

Trait name Trait Life span Growth habit Trait × Life Trait × Habit R2

SLA† < 0.01 0.02 0.04 — — 0.60
Leaf N† 0.10 < 0.01 — (0.31) — 0.44
Leaf P† (0.72) < 0.01 — — — 0.46
Ψosm† 0.08 < 0.01 0.16 (0.37) 0.17 0.52
LDMC† 0.03 < 0.01 — (0.23) — 0.52
Leaf Δ13C‡ 0.05 < 0.01 0.16 (0.32) 0.19 0.55
Leaf thickness 0.11 < 0.01 0.22 0.11 (0.09) 0.52
Pubescence 0.09 0.57 0.07 0.02 0.08 0.55
Height 0.08 < 0.01 (0.24) 0.05 — 0.51
Leaf area 0.05 < 0.01 — (0.85) — 0.48
SSD† 0.05 < 0.01 0.16 (0.28) 0.19 0.49

Bold values indicate P < 0.05; italic values indicate 0.05 < P < 0.1. SLA, specific leaf area; N, nitrogen; P, phosphorus; Ψosm, leaf osmotic potential; C, car-
bon; LDMC, leaf dry matter content; SSD, stem specific density.
See Supporting Information Table S1 for details of the trait names. Values in parentheses are terms that were not in lowest AIC model but were in models
within two AICs of lowest AIC model.—, terms that were removed from all models within two AICs of lowest AIC model.
†Traits that were significantly related to Sspp without life span and growth habit in the model.
‡C4 species were removed from the leaf Δ13C model.

Fig. 4 Standardized slopes from relationships of water-year precipitation (PPT) with community-weighted traits Tcomm. PPT–Tcomm regressions were done
separately in pastures without grazing or having light grazing (ULG; dark diamonds) and in pastures with moderate or heavy grazing (MHG, light squares).
Traits assessed, from left to right, were specific leaf area (SLA), leaf nitrogen (leaf N), leaf phosphorus (leaf P), stem specific density, leaf osmotic potential
(Ψosm ), leaf thickness, leaf dry matter content (LDMC), individual leaf area, pubescence, and plant height. All values used in regressions were normalized
by their means for comparison across traits. Error bars represent 95% confidence intervals. Transformations are as in Fig. 2; note that the sign of leaf Ψosm

was reversed such that greater positive values represent greater drought tolerance.
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between a continuous trait and Sspp was with LDMC (Fig. 2), a
trait that provides information both about drought tolerance and
leaf economics. This contention is supported by our path analysis
results, which show robust separate paths from LDMC and SLA
to Sspp. This is likely because LDMC is associated with thicker
and more rigid cell walls within the leaf, which allows for mainte-
nance of cell function under low leaf water potentials (Monson
& Smith, 1982). In this way, LDMC provides information about
a species’ ability to tolerate dry conditions. Increased C costs
associated with this safety infrastructure can result in slower
growth rates, compared with species having thinner, less rigid cell
walls. As such, LDMC also informs about a species’ position
along the leaf economic spectrum. Additional evidence that both
leaf economic and drought-tolerance traits are important for
determining precipitation sensitivity are, first, high correlation
coefficients of leaf osmotic potential, SLA, and leaf P and,second,
that LDMC and SLA were both included in the model with the
lowest AIC and greatest R2 during the stepwise model selection
process (Table S2). Although LDMC and SLA are often closely
related, they can provide different information about drought
tolerance and growth rate, perhaps particularly in this ecosystem,
where an inverse relationship between LDMC and thickness
weakens their correlation (Blumenthal et al., 2020). The counter-
intuitive relationship between LDMC and thickness in this
ecosystem is likely because species with high LDMC (contribut-
ing to low SLA) also have thin leaves (contributing to high SLA).
These trends occur within functional groups but are most clearly
seen across functional groups: perennial forbs and legumes in this
ecosystem often have thicker, but less dense leaves, whereas
perennial grasses have thinner, but more dense leaves (Blumen-
thal et al., 2020).

The codependence of Sspp on leaf economic and drought-toler-
ance traits is likely due to ‘fast’ species being better able to increase
growth in wet years, whereas species able to tolerate drought con-
tinue functioning in dry years. So, a species’ Sspp may be driven by
either leaf economic or drought-tolerance traits. For example,
Oenothera albicaulis, prairie evening primrose, was the annual
species with the highest Sspp, yet it had an intermediate SLA value.
We suspect the reason for its high Sspp value was due to a lack of
hydraulic safety infrastructure, indicated by low LDMC, low stem
specific density, and less negative Ψosm, or alternately due to a lack
of germination in dry years. The independent effects of LDMC
and SLA shown in our ‘best’ model and path analysis (Fig. 3) sug-
gest that LDMC provides information about the drought tolerance
of species within this system, which is separate from its effects
through leaf economics. Sspp is determined by species’ responses in
both wet (via ability to fully take advantage of excess soil water)
and dry (via ability to maintain abundance despite low water avail-
ability) years. It follows that both drought tolerance and leaf eco-
nomic traits are important for determining Sspp, as we see here.
We also note that we tested an alternate path analysis model struc-
ture that switched the directionality between LDMC and Ψosm,
such that Ψosm → LDMC, and this led to a model that was a poor
fit to the data (χ2 = 6.23, df = 2, P = 0.04), but the effect sizes
were qualitatively similar to our a priori model. We suggest that
the robustness of the path analysis findings despite changes in

model structure provides additional evidence that LDMC is associ-
ated with Sspp due to its linkages with both the leaf economic spec-
trum and drought resistance.

Qualitatively, these results align with previous observations
across spatial gradients. For example, global gradients of leaf eco-
nomic traits and climate (e.g. Ordoñez et al., 2009; Wright et al.,
2017) show that traits related to ‘fast’ growth strategies often are
more common in wetter ecosystems, and traits related to ‘slow’
growth strategies exist in drier ecosystems. Also, previous studies
have shown drought tolerance traits are typically more successful
(Markesteijn et al., 2011) and abundant (Bartlett et al., 2012;
Belluau & Shipley, 2017) in more arid locations. However, pat-
terns between precipitation and traits that are relatively weak
across space (Wright et al., 2004; Ordoñez et al., 2009; Kattge
et al., 2011) turn out to be quite strong through time within this
semiarid ecosystem. So, though our findings support the con-
tention that economic traits should be useful for understanding
water relations within ecosystems (Reich, 2014), and that rapid
resource acquisition and growth is an important strategy for cop-
ing with variable water availability, they also highlight the need
for simultaneously considering drought tolerance to robustly
assess community-level effects of altered water availability. Addi-
tionally, these strong interspecific relationships of both drought
and leaf economic traits with Sspp suggest that we can predict
both which species will be most responsive in terms of productiv-
ity and which will be most resistant to drought. Our findings also
suggest that LDMC may be one of the most useful traits for
understanding semiarid ecosystems, as previously observed for
mesic and arid ecosystems (Wilson et al., 1999; Laliberté et al.,
2012; Frenette-Dussault et al., 2013; Májeková et al., 2014).
Thus, we found broad support for our prediction that precipita-
tion sensitivity can be linked to both leaf economics traits and
drought-resistance traits, and that these linkages are orthogonal
to one another.

Trait–Sspp relationships within and among functional
groups

One challenge of using plant traits to predict the functioning of
plant communities is the possibility that the traits most strongly
related to function differ between plant functional groups. We
found that, even when accounting for differences in Sspp across
growth habit and/or life span, variation of continuous traits were
important predictors for Sspp, especially for SLA and LDMC
(Fig. 2; Table 2). Another clearer pattern in our findings was that
shorter plants were more sensitive to interannual precipitation
shifts, but only among annual species (Fig. 2; Table 2). This
could reflect the reliance of short annual species, which tend to
have shallow roots (e.g. V. octoflora; Augustine et al., 2017), on
consistent precipitation across the growing season, whereas short
perennials can have substantial root networks (e.g. B. gracilis;
Liang et al., 1989).

These findings are also important for predicting ecosystem
states and functioning under shifts in environmental conditions.
Many demographic vegetation components within Earth system
models use plant functional groups to represent changes in
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vegetation and their subsequent control on ecosystem processes –
see review by Fisher et al. (2018) – whereas others represent vege-
tation shifts using continuous traits to represent individuals
(Scheiter et al., 2013). Our findings support the suggestion that
both continuous traits and functional groups should be incorpo-
rated into projections of future ecosystem states and functioning
(e.g. Butler et al., 2017). Additionally, our findings that drought-
tolerance traits were related much more strongly to temporal pat-
terns of rainfall than those found typically across space lead us to
suggest caution when using spatial gradients of traits and envi-
ronmental conditions to predict community shifts under global
changes.

Are cross-species trait–sensitivity patterns indicative of
shifts in community-level traits?

Similar to species-level responses, we found that many of the
community-weighted traits we examined were related to interan-
nual variation in precipitation (Fig. 4). Wet years led to greater
community-weighted values for many ‘fast’ traits, whereas dry
years led to greater values for LDMC and Ψosm, in each case
reflecting greater abundance of species with those traits. How-
ever, the robustness of Tcomm–precipitation relationships varied
in areas having different grazing pressures, suggesting that com-
munity-scale responses to precipitation may be mediated by other
factors, such as land management. For example, in the lightly/un-
grazed pastures (Fig. 4, dark diamonds), increases in Thelesperma
filifolium (a species with high leaf N and relatively high Sspp) in
wet years contributed to a substantial increase in community-
weighted leaf N. Alternately, in the areas with moderate and
heavy grazing (Fig. 3, light squares), we found a much weaker
relationship between community-weighted leaf N and precipita-
tion because T. filifolium is typically not abundant in areas of
higher grazing pressure (Milchunas, 2011; Porensky et al., 2017).
In moderately and heavily grazed pastures, we found that
pubescence was a strong response trait, indicative of increased
community-weighted pubescence in wetter years, and vice versa
in dry years. This is likely linked to the abundance of Artemisia
frigida, a very pubescent subshrub that is relatively sensitive to
precipitation (Table 1) and abundant in areas of high grazing
pressure. These location-specific differences in response traits
highlight the need to understand the initial plant community
composition to determine its trajectory under varying or chang-
ing precipitation.

It is important to note that these variations in community-
weighted traits do not incorporate intraspecific variation, which
will likely also be an important component of how community
traits respond to altered precipitation. Based on previous work
showing predictive power of interspecific drought-tolerance traits
despite the presence of trait plasticity (Bartlett et al., 2014), we
contend that interspecific rankings are still useful for assessing
directionality of shifts in community traits to occur under altered
precipitation. We posit that these relationships may be more pro-
nounced when intraspecific responses to altered precipitation are
also incorporated, yet additional investigation of these trends is
needed.

Conclusions

Here, we focused on one of the less studied areas in trait-based
ecology by assessing the role of plant traits as predictors of
species and community performance through time in intact
communities. We found that multiple physiological and mor-
phological plant traits were strongly linked with species-level
sensitivity to precipitation, explaining variation in sensitivity
both within and among functional groups. In this semiarid
grassland, plant strategies for coping with highly variable precip-
itation appear to fall along two different spectrums, one describ-
ing a species’ leaf economic spectrum and the other describing
its drought tolerance. Both of these trait categories seem to be
important in determining a species’ response to altered precipi-
tation. These results provide insight into how species and plant
communities might respond to fluctuations or directional shifts
in water availability. For example, under chronically increased
precipitation and in wet years, we predict that plant communi-
ties may shift to those having more species lacking drought-tol-
erance characteristics and more species having characteristics for
fast growth. In conjunction with information of how traits link
with ecosystem functioning, this will aid in making predictions
of shifts in ecosystem functioning with statistical and process-
based models, as well as aid land managers with risk mitigation.
For example, although climate records for this region do not
show trends in average annual precipitation (Ray et al., 2008),
they do show substantially higher occurrence of severe drought
(Lukas et al., 2014). As such, we may see increased abundance
of species and communities with low SLA, high LDMC, and
less negative Ψosm in these ecosystems, which may result in rela-
tively greater ecosystem function in dry years. So, ensuring the
presence of drought-resistant species within landscapes should
be a priority for sustainability of ecosystem function and ser-
vices under more frequent drought. Additionally, care should be
taken when applying broad trait–environment relationships,
since the identity of traits that change under altered resource
levels may vary among functional groups/ecosystems. Based on
these findings, we suggest that continuous traits can add value
to more traditional functional group categorization schemes and
improve our understanding of how communities respond to
fluctuations in water availability. Both drought tolerance and
economic traits should be considered when predicting future
community structure.
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Shipley B, Belluau M, Kühn I, Soudzilovskaia NA, Bahn M, Penuelas J, Kattge

J, Sack L, Cavender-Bares J, Ozinga WA et al. 2017. Predicting habitat
affinities of plant species using commonly measured functional traits. Journal of
Vegetation Science 28: 1082–1095.

New Phytologist (2020) © 2020 No claim to US Government works

New Phytologist ©2020 New Phytologist Foundationwww.newphytologist.com

Research

New
Phytologist12



Shipley B, De Bello F, Cornelissen JHC, Laliberté E, Laughlin DC, Reich PB.
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